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A Note on the Diophantine Equation 
X3 +y3 + zy = 3 

By J. W. S. Cassels 

Abstract. Any integral solution of the title equation has x =- y - z (9). 

The report of Scarowsky and Boyarsky [3] that an extensive computer search has 
failed to turn up any further integral solutions of the title equation prompts me to 
give the proof of a result which I noted many years ago and which might be of use in 
further work (cf. footnote on p. 505 of [2]). 

THEOREM. Any integral solution of 

(1) X3 + y3 + z3 = 3 
has 

(2) x -y -z (9). 

Proof. Trivially, 

(3) x -y --z -1 (3). 
We work in the ring Z[p] of Eisenstein integers, where p is a cube root of unity. If 

a E Z[p] is prime to 3, then there is precisely one unit e = +pi (j = 0,1,2) such 
that ea 1 (3). The supplement [1] to the law of cubic reciprocity states that if 
so E Z[p] is prime, s- 1 (3), then 3 is a cubic residue of so in Z[p] precisely when 
v a (9) for some a E Z. It follows that if a E Z[p], a 1 (3) and if 3 is congruent 
to a cube modulo a, then a b (9) for some b E Z. 

Put 

a = -p 2X-py, 

so 

a = x + (x - y)p 1 (3) 

by (3). By (1) we have z3 3 (a), so the preceding remarks apply. Hence x - y 0 
(9). Finally, (2) follows by symmetry. 
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